Гниение белков и аминокислот в кишечнике

Основная масса аминокислот, образовавшихся в пищеварительном тракте в результате переваривания белков, всасывается в кровь и пополняет аминокислотный фонд организма. Определённое количество невсосавшихся аминокислот подвергается гниению в толстом кишечнике. Гниение — превращения аминокислот, вызванные деятельностью микроорганизмов в толстом кишечнике. Усилению процессов гниения аминокислот могут способствовать:.

Дорогие читатели! Наши статьи рассказывают о типовых способах решения проблем со здоровьем, но каждый случай носит уникальный характер.

Если вы хотите узнать, как решить именно Вашу проблему - начните с программы похудания. Это быстро, недорого и очень эффективно!


Узнать детали

Справочник химика 21

Мечников утверждал, что процессы гниения белковой пищи в кишечнике и вызываемая ими аутоинтоксикация - главное препятствие в достижении долголетия. В теле человека эти чужеродные вещества ксенобиотики превращаются в менее токсичные, и даже нейтральные вещества. Процессы метаболизма ксенобиотиков осуществляются в любой клетке и обычно они приводят к превращению этих веществ в более водорастворимые и менее токсичные продукты обмена. Происходит это путем окисления токсинов специальными ферментами - оксидазами, а затем конъюгации соединения полученных метаболитов с теми или иными нейтральными веществами.

Этот процесс происходит на главных путях поступления ксенобиотиков в организм - пищевом печень и желудочно-кишечный тракт и дыхательном легкие. Здесь необходимо отметить, что окисление, восстановление и гидролиз чужеродных соединений осуществляют в основном микросомальные и пероксимальные ферменты. Это значит, что ходе этого процесса в организме человека образуется большое количество свободных радикалов, известных своими мутагенными и канцерогенными свойствами.

В клетках печени в результате микросомального и пероксимального окисления эндотоксины приобретают функциональную группу, с которой затем смогут связаться особые нейтрализующие соединения. Основная функция этой фазы это присоединение к эндотоксину обезвреживающих элементов, например серной или глюкуроновой кислоты. Возникновение сольватной оболочки изменяет физические свойства и улучшает растворимость ксенобиотиков, что в конечном итоге способствует его быстрой экскреции выделения из организма.

Функционирование второй фазы ограничивается тем, что в ней участвуют только те вещества, которые уже прошли первую фазу метаболизма ксенобиотиков. Но с другой стороны эта фаза имеет важное достоинство - ферменты ответственные за присоединение нейтрализующих молекул есть во всех клетках.

Поэтому во второй фазе уже вся совокупность клеток организма борется с токсинами, что позволяет эффективно осуществлять или завершать детоксикацию. Система обезвреживания образовавшихся в результате гниения белков пищи токсинов включает множество разнообразных ферментов, под действием которых практически любой ксенобиотик может быть нейтрализован. Большинство ксенобиотиков в результате метаболизма становятся более гидрофильными, поступают в плазму крови, откуда они удаляются почками с мочой.

Однако несмотря на доминирующую роль печени и почек в метаболизме ксенобиотиков, другие органы также принимают участие в этом процессе. В детоксикации организма, хоть и в меньшей степени принимают слизистые оболочки — желудочно-кишечного тракта, легких и верхних дыхательных путей.

Благодаря диффузии ксенобиотики также могут выводиться с молоком кормящих матерей и секретом потовых, сальных, слюнных желез. Существует прямая корреляция между активностью гнилостных процессов в кишечнике и содержанием ксенобиотиков в крови и секрете желез!!! Под действием ферментов бактерий из аминокислоты тирозина могут образовываться фенол и крезол путём разрушения боковых цепей аминокислот микробами рис.

Катаболизм тирозина под действием бактерий. E - бактериальные ферменты. Всосавшиеся продукты по воротной вене поступают в печень, где обезвреживание фенола и крезола может происходить путём конъюгации с сернокислотным остатком ФАФС или с глюкуроновой кислотой в составе УДФ-глюкуроната.

Реакции конъюгации фенола и крезола с ФАФС катализирует фермент сульфотрансфераза рис. Конъюгация фенола и крезола с ФАФС. E - сульфотрансфераза. Конъюгация глюкуроновых кислот с фенолом и крезолом происходит при участии фермента УДФ-глюкуронилтрансферазы. Итоговые продукты конъюгации хорошо растворимы в воде и выводятся с мочой через почки.

Повышение количества конъюгатов глюкуроновой кислоты с фенолом и крезолом обнаруживают в моче при увеличении продуктов гниения белков в кишечнике. В кишечнике из аминокислоты триптофана микроорганизмы образуют индол и скатол.

Бактерии разрушают боковую цепь триптофана, оставляя нетронутой кольцевую структуру. Индол образуется в результате отщепления бактериями боковой цепи, возможно, в виде серина или аланина рис. Катаболизм триптофана под действием бактерий. Скатол и индол обезвреживаются в печени в два этапа. Так, индол переходит в индоксил, а затем вступает в реакцию конъюгации с ФАФС, образуя индоксилсерную кислоту, калиевая соль которой получила название животного индикана рис.

Участие сульфотрансферазы в обезвреживании индола. Как известно, в зависимости от характера предпочитаемого пищевого субстрата кишечную микрофлору человека разделяют на две основные группы:.

Это биологически активное вещество является компонентом наружной стенки ВСЕХ грамотрицательных бактерий. В организме человека эндотоксин проникает через слизистую в ткани и кровь, где распознаётся иммунными клетками в первую очередь макрофагами и вызывает сильный иммунный ответ. Именно поэтому бактериальный эндотоксин гнилостной микрофлоры играет ключевую роль в развитии воспалительного процесса в толстом кишечнике, печени и эндотелии кровеносных сосудов.

В результате гниения белков в кишечнике человека образуется и всасывается в кровь аммиак. Даже небольшое повышение его концентрации оказывает неблагоприятное действие на организм, и прежде всего на ЦНС. Этот ядовитый газ легко проникает через мембраны в клетки и изменяет течение некоторых биохимических реакций в митохондриях. Как известно именно эти вещества в плазме крови создают оптимальные условия для склеивания красных клеток крови.

Организм человека вынужден применять целый ряд защитных механизмов для обезвреживания токсичных веществ, образующихся в кишечнике из пищевых продуктов с высокой концентрацией белка. Наполняя свой рацион овощами и фруктами, и ограничивая употребление высокобелковой пищи, люди естественным образом подавляют активность гнилостных микроорганизмов. Уменьшение потока ксенобиотиков и эндотоксинов на низкобелковом питании снижает нагрузку на печень, иммунную и выделительную системы.

Чукичев И. Физиология человека. В наблюдениях проводившихся многие месяцы на людях, было установлено, что можно обеспечить азотистое равновесие посредством именно этого количества белка в рационе.

Это означает, что в рационе здорового человека количество белка должно обязательно превышать значение белкового минимума.

И это естественным образом получается при сбалансированном рационе состоящем из овощей и фруктов. Участие в проекте "Закон Времени".

Главная Новостная лента Закон Времени Поддержка проекта. Метаболизм продуктов гниения белка в организме. Метаболизм и выведение ксенобиотиков из организма. Поделитесь материалом в социальных сетях. Читайте также. Prev Next Идёт битва за трезвость. Горячая фаза на фоне коронавируса.

Бактерии в легких помогают бороться с гриппом, выяснили ученые. Школа Здоровья день за днем. Здоровье в условиях изоляции. Трезвость наступает с коронавирусом. Веганизм в альтернативной медицине. Обоснование веганского рациона: эмоции или наука?

Версия для компьютера.

Проблемы ЖКТ влияют на весь организм

Мечников утверждал, что процессы гниения белковой пищи в кишечнике и вызываемая ими аутоинтоксикация - главное препятствие в достижении долголетия. В теле человека эти чужеродные вещества ксенобиотики превращаются в менее токсичные, и даже нейтральные вещества. Процессы метаболизма ксенобиотиков осуществляются в любой клетке и обычно они приводят к превращению этих веществ в более водорастворимые и менее токсичные продукты обмена. Происходит это путем окисления токсинов специальными ферментами - оксидазами, а затем конъюгации соединения полученных метаболитов с теми или иными нейтральными веществами. Этот процесс происходит на главных путях поступления ксенобиотиков в организм - пищевом печень и желудочно-кишечный тракт и дыхательном легкие.

1.5. Гниение аминокислот в кишечнике и обезвреживание продуктов гниения.

Известно, что микроорганизмы кишечника для своего роста также нуждаются в доставке с пищей определенных аминокислот. Микрофлора кишечника располагает набором ферментных систем, отличных от соответствующих ферментов животных тканей и катализирующих самые разнообразные превращения пищевых аминокислот. В кишечнике создаются оптимальные условия для образования ядовитых продуктов распада аминокислот: фенола, индола, крезола, скатола, сероводорода, метилмер-каптана, а также нетоксичных для организма соединений: спиртов, аминов, жирных кислот, кетокислот, оксикислот и др. Так, в процессе распада серосодержащих аминокислот цистин, цистеин, метионин в кишечнике образуются сероводород H2S и метил-меркаптан CH3SH. Диаминокислоты — орнитин и лизин — подвергаются процессу декарбоксилирования с образованием аминов — путресцина и кадаверина. Из ароматических аминокислот: фенилаланин, тирозин и триптофан — при аналогичном бактериальном декарбоксилировании образуются соответствующие амины: фенилэтиламин, параоксифенилэтиламин или тира-мин и индолилэтиламин триптамин. Кроме того, микробные ферменты кишечника вызывают постепенное разрушение боковых цепей циклических аминокислот, в частности тирозина и триптофана, с образованием ядовитых продуктов обмена — соответственно крезола и фенола, скатола и индола.

Превращения аминокислот под действием микрофлоры кишечника

Гниение белков в кишечнике: под влиянием микрофлоры нижнего отдела кишечника некоторые аминокислоты могут подвергаться превращениям до аминов, жирных кислот, спиртов, фенолов, сероводорода и др. При декарбоксилировании аминокислот возможно образование соответствующих нередко ядовитых аминов. При дезаминировании возникают насыщенные и ненасыщенные кислоты, кетокислоты, оксикислоты. Путресцин образуется при декарбоксилировании орнитина, а кадаверин — из лизина. Они относятся к группе трупных ядов. Выводятся из организма через почки с мочой почти в неизменном виде. Выделение путресцина и кадаверина с мочой наблюдается при холере, дизентерии и т.

Аммонифицирующие микроорганизмы иначе гнилостные микроорганизмы, гнилостная микрофлора широко распространены в почве, воздухе, воде, животных и растительных организмах. Поэтому любой подходящий субстрат быстро подвергается гниению.

23. Гниение белков и аминокислот в кишечнике. Пути образования продуктов гниения. Примеры.

Часть аминокислот не всасывается и подвергается процессам гниения с участием микрофлоры в толстом кишечнике. Продукты гниения аминокислот могут всасываться и попадают в печень, где подвергаются реакциям обезвреживания. Диаминокислоты, в частности орнитин и лизин, подвергаются декарбоксилированию с образованием протеиногенных аминов трупных ядов. При разрушении фенилаланина, тирозина, триптофана, образуются соответствующие биогенные амины: фенилэтиламин, триптамин, серотонин. При разрушении этих же аминокислот могут образовываться крезол, фенол, скатол, индол, бензол.

Уменьшение переваривания белков из-за низкой протеолитической активности в желудке пониженная кислотность или в кишечнике хронические панкреатиты , нарушение целостности стенки кишечного тракта вследствие гельминтозов или неполной нейтрализации соляной кислоты гиперацидный гастрит, нарушение желчевыделения приводит к последствиям, которые отражаются на деятельности всего организма.

Известно, что микроорганизмы кишечника для своего роста также нуждаются в доставке с пищей определенных аминокислот. Микрофлора кишечника располагает набором ферментных систем, отличных от соответствующих ферментов животных тканей и катализирующих самые разнообразные превращения пищевых аминокислот. В кишечнике создаются оптимальные условия для образования ядовитых продуктов распада аминокислот : фенола , индола , крезола , скатола , сероводорода , метилмер-каптана, а также нетоксичных для организма соединений: спиртов , аминов , жирных кислот , кетокислот , оксикислот и др. Так, в процессе распада серосодержащих аминокислот цистин , цистеин , метионин в кишечнике образуются сероводород H 2 S и метил-меркаптан CH 3 SH. Диаминокислоты — орнитин и лизин — подвергаются процессу декарбоксилирования с образованием аминов — путресцина и кадаверина. Из ароматических аминокислот : фенилаланин , тирозин и триптофан — при аналогичном бактериальном декарбоксилировании образуются соответствующие амины : фенилэтиламин , параоксифенилэтиламин или тира-мин и индолилэтиламин триптамин. Кроме того, микробные ферменты кишечника вызывают постепенное разрушение боковых цепей циклических аминокислот , в частности тирозина и триптофана , с образованием ядовитых продуктов обмена — соответственно крезола и фенола , скатола и индола.

ВИДЕО ПО ТЕМЕ: Биохимия Метаболизм аминокислот русс

Комментариев: 1

  1. Нет комментариев.